
NATIONAL AERONAUTICS AND SPACE ADMlNlSTRATtON 

I. 

LO0 W H O A  A11113Vd 

Grant NGR 22-007-068 

THE SEPARATE COMPUTATION OF ARCS FOR 

OPTIMAL FLIGHT PATHS WITH STATE VARlABLE 

_. 

I N EQUALITY CONSTR A I NTS 

. 
BY 

Jason 1. Speyer, Rarnan K.Mehra and Arthur E. Bryson,Jr. 

May  1967 

Technical Report No. 526 
"Reproduction in whale or in  part i R  permitted hy the U .  S. 
Government. Distribution of this document I S  unlimited. I' 

Division of Engineering and Applied Physics 
Harvard University Cambridge E Massachusetts 

https://ntrs.nasa.gov/search.jsp?R=19670025386 2018-07-21T16:58:47+00:00Z



\ 

Office of Naval Research 

Contract Nonr - 1866( 16) 

NR - 372 - 012 

National Aeronautics and Space Administration 

Grant NGR-22-007-068 

THE SEPARATE COMPUTATION OF ARCS FOR 

OPTIMAL FLIGHT PATHS WITH STATE VARIABLE 

INEQUALITY CONSTRAINTS 

BY 

Jason L. Speyer, Raman K. Mehra, and Arthur E .  Bryson, J r .  

Technical Report No. 526 

Reproductioh in  *hole or  in  par t  is permitted by the U. S 
Government. Distribution of this document i s  unlimited 

Maiy 1967 

The r e sea rch  reported in  this document w a s  made possible through 
support extended .the Division of Engineering and Applied Physics,  
Harvard University by the U. S. Army Research Office, the U. S. 
A i r  Force  Office of Scientific Research and the U. S. Office of 
Naval Research under the Joint Services Electronics P rogram by 
Contracts  Nonr-1866(16), (07), and (32),and NASA Grant NGR-22-007- 
068. 

. 
Div'sion of Engineering and Applied Physics 

f Harvard University Cambridge, Massachusetts 
f 



I '  

* T H E  SEPARATE COMPUTATION OF ARCS FOR OPTIMAL 

FLIGHT PATHS WITH STATE VARIABLE 

PNEQUA LETY CONSTRAINTS 

BY 

Jason  L. Speyer,  Raman K .  Mehra,  and Arthur  E .  Bryson, Jr .  

Division of' Engineering and Applied Physics  

Harvard Unive r s l ty  Cambridge, Massachusetts 

A BSTR A C T 

Separate  computation of a r c s  is possible for a la rge  c l a s s  of 

optimization problems with s ta te  variable inequality constraints.  Su rp r i s  - 
ingly, this c lass  ( to  the best  of the authors '  knowlege) includes al l  physical 

problems which have beer, solved analytically o r  numerically to  date. 

cally these problems have only one constrained arc .  

problems,  separation of a r c s  can be used to  sea rch  for additional constrained 

a r c s .  

Typi- 

Even in more  complex 

A s  an important example, a maximum range t ra jec tory  for a glider 

velocity is determined, enter ing the E a r t h ' s  atmosphere at  a superc i rcu lar  

subject to  a maximum altitude constraint a f te r  initial pull-up. 

that  the optimal path can be divided into three  a r c s ,  which may be de te r -  

mined separately with no approximations, The three  a r c s  a r e  (1)  the initial 

arc ,  beginning a t  specified initial condition and ending at the entry point onto 

the altitude constraint;  ( 2 )  the a rc  lying on the altitude constraint; and (3)the 

t e r m i n a l  a r c ,  beginning at  the exit point of the altitude constraint  and ending 

at s o m e  specified te rmina l  altitude. 

It is shown 

* T h e  work reported was partially supported by the Space and Information 
Sys tems Division of the R aytheon Company. 



A BSTR AC T (C ont ' d) 

The conjugate gradient method, (ref.  4), a first order  optimization scheme,  is 

shown to  converge very rapidly to  the individual unconstrained optimal a r c s .  

Using this optimization scheme and taking advantage of the separation of 

a r c s  an investigation revealed that two locally optimum paths exist. The 

range of one exceeds the range of the other by about 250 nautical miles 

(about 6%) for  the re-entry vehicle used here  (maximum lift-to-drag ratio 

is .9)  . 



I. INTRODUCTION 

In the past few years  techniques for solving optimal programming 

problem wifh a state variable inequality constraint (SVIC) have been 

developed. 

Gamkrelidze [l] ,  and Bryson, Denham, and Dreyfus, [2]  . 
technique for solving such problems uses  a "penalty function" which r e -  

quires  the introduction of an auxiliary state variable [3], [4]. 

Necessary conditions for a stationary solution were  given by 

One numerical  

A n  improve- 

ment over the "penalty function" method, in both speed and accuracy, is  

the direct  approach [5], where the SVIC i s  satisfied without using an 

ex t ra  state variable. In both techniques, the equations of motion and the Euler-  
I 

Lagrange equations must  be integrated over the ent i re  path for each i tera-  

tion. 

The present paper shows that for certain problems with a SVIC, the 

computation of the state and Euler-Lagrange variables need only be done 

on the unconstrained arcs .  Numerical computation of shorter  unconstrained 

paths allows more  rapid convergence and increased numerical  accuracy. 

Also,  if the constrained a r c  forms a large par t  of the entire path, this 

-1-  
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greatly reduces the amount of computation required. 

a r c s  occurs,  for example, in the problem of finding the maximum range of 

a glider entering the Ear th ' s  atmosphere at  parabolic velocities subject to 

a maximum altitude constraint af ter  initial pull-up ( ske tch  of possible 

t ra jectory in altitude-range space is shown in Fig. 1) . 
solved by the direct  method Of reference 5 and by the penalty function 

method in reference 11, 

be seen by observing that on the constant altitude constraint  two of the 

three state variables a r e  fixed (altitude and flight path angle); 

decreases  due to the drag  force. Velocity vs. range is a universal  curve 

on this arc;  only the velocity a t  the beginning and the end of this a r c  need 

be determined. 

constraint boundary that is higher than the velocity a t  the end of the con- 

strained a r c ,  has the -- same unconstrained path f rom the exit point of the 

altitude constraint to the terminal  altitude. Similarly,  a maximum range 

path, ending at %velocity on the constraint  boundary that is lower than 

the velocity a t  the beginning of the constrained arc ,  has  the same  uncon- 

strained path f rom the inital point to the entry point onto the constraint  

boundary. The unconstrained a r c s  can be found separately,  determining 

the velocities a t  the beginning and the end of the constrained a r c  in the 

process.  

be easily evaluated, 

path, without any appr oximationg 

This separation of 

This problem was 

The independence of the unconstrained a r c s  can 

the velocity 

A maximum range path, start ing a t  any velocity on the 

Having these velocities, the range on the altitude constraint  can 

The three a r c s  put together f o r m  the maximizing 

Such separation of a r c s  is possible if the number of var iables  on 

which the motion and constraints depend explicitly 

the order  of the SVIC, 

is l a r g e r  by one than 

is defined as the number of The order  of a SVIC 
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differentiations of the SVIC function needed for the control variable to  

appear explicitly (cf. ref. 2) 

2. PROBLEM FORMULATION 

The general  problem considered he re  is to  determine a control 

program u( t ) ,  in the interval t o  t tf S O  as to  maximize 

J = [:(x, u, t) dt  

0 

subject to  the constraints 

2 i  = f ( X , U ,  t) 

t and x(t ) given 
0 0 

where t (time)is the independent variable; ( ) is d / d t (  I )  ; u(t)  is a 

sca la r  control variable; x(t) is an n-vector of s ta te  variables;  f is an  n- 

vector of known functions of x( t ) ,  u( t ) ,  and t ,  and is assumed everywhere 

differentiable with respect  to  x and ut M is a q-vector of known functions 

of x(t ) and tf, q\< n; S is a scalar function of x(t) and t. 

F o r  those intervals of t ime that an extrema1 solution l ies  on a p 

f 
th 

o rdc r  SVIC boundary (S(x, t )  = 0) it is necessary  that S and all its t ime 

derivatives that d o  not contain the control be zero: 
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The value of the control which keeps (6)  satisfied along the constrained path 

is obtained by the pth derivative of S 

s (P) (X,U,t) = 0 (7)  

It is assumed that the control on the constraint boundary can be found a’s a 

function of (xpt)  f rom the implicit equation (7) in  the fo rm 

3.  SUFFICIENT CONDITIONS FOR SEPARATE COMPUTATION O F  ARCS 

Separation of a r c s  is possible if the contribution of the constrained a r c  

to the performance index depends only on the entry and exit values of one 

variable ( t  o r  some element of x). Suppose the contribution of the constrained 

a r c  to the performance index, J ( t19  t2) is 

J[ t ls  t2] = g(x, u, t)  dt ( 9) 

-4 
where t If p=n 

then (6) can be used to solve for all the variables in t e r m s  of one, say x 

Let  the remaining n-1 state variables be denoted by the vector ye Then 

is the entry point t ime and t2 is the exit point time. 1 

1 ’  

f r o m  (6)  

All  the var iables  in (9 )  can be eliminated except x1 i f  (y,  t ,  u) a r e  

eliminated using (10) and (8) and the variable of integration is changed f rom 

t t o  x1 by the differential element of x1 in  ( 2 )  as 
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Thus (9)  becomes 

It is tacitly assumed that start ing f rom any value of x l ( t l )  

constrained a r c ,  the value of x ( t  ) will eventually be reached. 

on the 

1 2  

If (12) is possible then the optimization problem can be separated 

into two smal le r  optimization problems. They are;  find u( t )  to  maximize 

subject to  (2), (5)  and the corner  conditions of ( 6 )  and ; find u(t)  to  

maximize 

J 2  = J[t2 9 tfl i- K[x1(t2)I (14) 

subject to  ( 2 ) ,  ( 3 )  and the initial conditions of (6) .  

(14) will give the maximum value of ( 1). 

The  s u m  of (13) and 

If the equations of motion and boundary conditions do not explicity 

depend upon clock t ime but only on time elapsed f r o m  the init ial  t ime,  then 

the a r c s  will separate for  n-1 = p. 

4. MAXIMUM RANGE O F  A HYPERSONIC GLIDER WITH AN 

ALTITUDE CONSTRAINT 

The ideas of the previous section a r e  applied h e r e  to  the problem of 

~ 
~ ~~~ 



- 7 -  

maximizing the range of a glider (entering the Ea r th ' s  atmosphere* at 

parabolic speeds) with an inflight constraint  on the maximum altitude 

af ter  pull-up. This problem, originally thought to  be a complicated prob- 

lem with a SVIC (ref.  5),  falls into the special  c lass  of separable  problems, 

The nomenclature for this problem is given in Fig. 2. The ae ro -  

dynamic forces ,  l i f t  and drag,  a r e  varied through the control variable 

a(t) = angle-of-attack. 
-2 

in Fig. 3. The wing loading of the glider mg/S,  was taken as 61.3 lb. ft . 
The lif t-drag charac te r i s t ics  of the glider are  shown 

The 1956 ARDC standard atmosphere model was used. The glider is 

approximated as a point m a s s  moving about a spherical  nonrotating Earth.  

The equations of motion a re :  

2 

v =  - g s in  Y 
-cDpv s 

2m 

) cos y c LPvs V 
Y =  t(- - 

2m R t h  V 

i =  v s in  Y (17) 

The  problem is to  find the control program,  

range 

U ( t ) ,  which maximizes the 

r t r  
cos Y dt 

1 + h/R 
0 

subject to  (15),  (16),  and ( 1 7 ) ,  with initial conditions on V , y  , and h,  and a 

*Actually the problem is s tar ted in the Ear th ' s  atmosphere par t ly  to  save  
computer time and partly because the control force is negligible compared 
to the centrifugal force during most  of the omitted path. 
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t e rmina l  condition on altitude and the inflight inequality constraint 

h( t)< hM 

where hM is the given value of the maximum allowable altitude. 

5. SEPARATION OF ARCS FOR THE MAXIMUM RANGE 

PROBLEM 

Starting from the initial conditions, a maximum range path even- 

tually enters  onto the constraint boundary a t  time t At this point 1' 

must  be satisfied as well a s  all along the constraint  boundary. 

t r o l  used to keep (20)  and (21)  

f r o m  h' = 0 which implies 

The con- 

satisfied on the constraint  boundary is found 

- 2m - - [ g _ M  - 
pMvs R t h M  cL 

where pM and are  the values of P and g on the constraint  boundary. 

Since h and Y a r e  fixed on the constraint  boundary, only the velocity 

is free.  

found a s  a function of the a rc-en t ry  and arc-exi t  velocities. 

variable t is eliminated by (15) s o  that 

The horizontal range travelled on the constraint  boundary can be 

The  independent 
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where CD 

Conceptually R A f s  $1 depends only on the values of the exit and entry 

velocities although in general  an analytic expression cannot be found. 

is a function only of velocity t h r a g h  ( 2 2 )  and Fig. 2. 

Thus the problem can be reduced to  two sma l l e r  problems in which 

the unconstrained a r c s  a r e  found separately.  

a r c  f r o m  the initial conditions to the entry point onto the constraint  

boundary is found by obtaining a U ( t )  which maximizes,  

The initial unconstrained 

,. 

The te rmina l  unconstrained a r c  f rom the exit point of the constrained a r c  

to  the te rmina l  boundary is found by evaluating an Ct(t) which maximizes  

The s u m  of RI  and R F  is the total range RAeOne  of the resu l t s  of this 

optimization technique is to  find the velocities a t  the two ends of the con- 

s t ra ined  a rc .  

If it is found that V(t,) ,< V(t2) then no path of finite length lies on 

the constraint  boundary although the optimal path may coincide with the 

constraint  boundary a t  a point. 

for  a given s e t  of constraint  levels an intermediate point constraint  mus t  be 

imposed (21, defined a s  S(x, t ) = 0, 1 

with the intermediate constraint  must  be positive ( f o r  maximization) ; i f  it 

i s  no% an unconstrained path which l ies below {he constraint  boundary will  be be t t a ,  

In this case  there  is no separation. However, 

The Lagrange multiplier associated 
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Necessary conditions for  the two unconstrained a r c s  can be stated 

af ter  first augmenting the performance indices as 

f t l  

L 
0 

and the variational Hamiltonian is 

t g s in  y 1 vcosy 

1 th /R  V 
H =  

x ) c o s y  t X h v s i n y  1 t ( -  - 
R t h  V 

Here 1 'y# \ 9  'ht ' y9  a r e  Lagrange multipliers.  The Euler-Lagrange 

equations a r e  defined f rom (28) a s  

V' 

4 

A = - H v ,  h y  = -HYs hh = -Hh 
V 

The boundary conditions for the initial unconstrained problem at t l  a r e  
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The boundary conditions for the terminal  unconstrained problem at 

t a r e  f 

- 
= 0 , h  ( t  ) = h f  = Vh 

= o , A  ( t )  = 4 
Y f Y(tf) 

while at the exit corner  

The original problem'has  been reduced to  two, two-point boundary- 

value problems. F o r  the initial a r c  the f o r m  of h, Y ,  and h a r e  known 

at the entry point and the initial conditions a r e  given. 

the f o r m  of h, y , and A v 9  a r e  known at the exit point whereas at the te rmina l  

boundary the values of 

is time-independent. 

V 

F o r  the te rmina l  a r c  

I and h are known. Note that the problem 

This implies that  H = 0 a l l  along the optimum path. 

v' h Y  

In this example there  a r e  three s ta te  var iables  and a second o rde r  

SVIC. Since the problem is time-independent n-1 = p. 

6. CALCULATION O F  THE PERFORMANCE INDEX 

ON THE CONSTRAINED ARC 

An analytic expression cannot in general  be found for  the range when on 

the constraint  boundary (23 ) .  However, when a successive improvement 

optimization scheme is used, some indication a s  to  the improvement of the 

performance index is necessary.  

range as a function of velocity start ing a t  the la rges t  expected value of V( t  ) 

It is suggested that a table be made of 

1 
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and ending a t  the lowest expected value of V(t2) .  The performance indices 

of (24) and (25) a r e  written a s  R and 

VL a r e  chosen values in which on every iteration V(t l )  >VB and VL W(t2). 

Evaluating F(V(tl)) - F ( V B )  and F(VL) p F(V(t2))  on the computer is r e -  

duced to a table look-up. 

- F ( V B )  and RF t F(VL) where V I B 

However, one important case where an analytic expression can be 

found for (23) is for the 1iftILdrag polar defined as 

CL = CL U 
0 

a2 
% = %  0 1 

FOP values of the constants of CL = -020 ,  C,, = .297,  CD = .451 x 
0 0 1 

the l if t-drag polar of Fig. 2 is obtained from.(33)  and (34). a(t) on the 

constraint  boundary is now simply obtained f rom (33) and (22)  as 

) 
2m gM 1 

a =  ( -  - 
V 2  R S  hM ‘L ’M’ 

0 

(33) 

( 34) 

(35) 

The drag  coefficient of (34) is a function of velocity on the constraint  

The analytic expression for  the range on the constraint  boundary solved by 

integrating (23) analytically is 

2 

Q6 
3 (37) 

-1 2Q2V tQ4 
tan 2 Q4 

+ Q 4 v  t Q 5 )  
RQ 

2 - Q2Q6 

I 
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where 

Q4 = - 

M) ‘M” t f i  t n 

2Q3Q4 

cL 
0 

L 
0 

Q 
4cD 

Qo = (y) 
1 

L A  
0 

Q3Ql 

7. REeENTRY WITH G-LIMITING AND TOTAL HEATING CONSTRAINT 

F o r  practical  reasons,  the re-entry problem may be complicated further 

by additional constraints. One such constraint is a limit on the resultant 

aerodynamic force. The ratio of the resulting aerodynamic force t o  the sea  

level weight is defined he re  a s  the number of g‘sI 

If N 

variable inequality constraint on the trajectory.  

dled by the techniques of reference 

of a r c s  as long a s  g-limit is always satisfied along the constraint boundary. 

is required to be less  than some given number, this imposes a control 
g 

This constraint can be han- 

2. It presents  no obstacle to the separation 

Another practical  constraint is a limit on the total heat absorbed by the 

heat  shield. 

in the maximum range problem with an altitude constraint. 

heat  absorbed on one a r c  determines the amount of heat that can be absorbed 

on the other a rc .  The a r c s  a r e  now dependent upon each other and the more  

complicated technique of reference 5 can be used, However, an alternative 

If the total heating is constrained the a r c s  cannot be separated 

The amount of 
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approach is to p e r f o r m  a parameter  s ea rch  on an equivalent problem 

that does separate.  The heating ra te  is 

where q is the heat and C is a known constant. A composite performance 

index can be formed using ( 3 9 )  and (18) a s  
9 

The procedure for  finding optimal paths with a heating constraint  is as 

follows: Choose a value for K. Since the problem is separable ,  the optimal 

a r c s  can easily be found and the total heat evaluated. 

heating is greater  than the des i red  value, K is increased; i f  less than the 

des i red  value, K is decreased. F o r  a new value of K the optimal a r c s  and 

the total  heating a r e  again evaluated. This s e a r c h  for the proper  value of K 

is continued until the desired value of total  heating is attained. 

If the value of total  

In general ,  integral  constraints ( the heating constraint  above is an 

example) may be handled by this procedure.  

8. NUMERICAL DETERMINATION OF MAXIMUM RANGE 

TRAJECTORIES 

Numerical Methods The "Conjugate Gradient Method" of reference 4, was 

used to determine the two unconstrained a r c s  of the r e -en t ry  problem. 

To  check the resu l t s  of the Conjugate Gradient Method a second o r d e r  

optimization program, the "successive sweep method" of re ferences  6 and 8,  

was used. This la t te r  algorithm generates  a sequence of improving paths 
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by maximizing a quadratic approximation to the performance index. 

Intitial Arc  The initial conditions for this a r c  were taken as: V = 33,961 ft./sec., 

y = - 1. 57 deg. , and h = 189,890 ft. 

it = t l )  onto the constraint boundary a r e  h = 220,000 ft. and y = 0 (V and tl 

a r e  unspecified). 

given initial conditions until y becomes zero  for the second time. In the 

conjugate gradient method the altitude constraint at  the endof the a r c  was met  

using a quadratic penalty function. 

the Hamiltonian equal to  zero,  

using l e s s  than 15 seconds per  i teration on the IBM 7094 computer. Fig. 4 

shows, in  altitude-range space, the start ing nominal and some of the following 

i terations 

The terminal  conditions at the entry point 

The equations of motion were integrated forward from the 

At that point X was determined by setting 
Y 

Convergence w a s  achieved in seven i terations 

However, the trajectory of Fig. 4 i s  - not the optimum path; it i s  

only a local optimum. 

path that gives 3070 more  range for the initial a r c  down to a velocity of 26,494 

ft. /sec (from this velocityon, the maximum range paths a r e  the same).  

increase  in range over the entire flight, i s  

optimal paths was not detected in either reference 11 o r  5. 

Fig. 5 shows this path with another locally optimum 

The 

670~ The existence of two locally 

These two paths a r i s e  f rom widely different control stlategies 

(See Fig. 7).  Path 2 in Fig., 5,6, and 7 uses low angles-of-attack to keep the 

d rag  smal l  and consequently penetrates deeply into the atmosphere where air 

density is high. 

vehicle a t  higher altitudes where air density and drag  a r e  lower. 

to  concentrate on maximizing FIV(tl)] in Eqn. (24) whereas path 2 s eems  to 

Path 1 uses  larger  values of angle-of-attack to  keep the 

Path 1 seems  
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concentrate on maximizing the integral ( the range) in Eqn (24). Path 1 and 2 

a r e  shown in Fig. 6 in altitude-velocity space, 

Continuity of the a - P r o g r a m  Results obtained in reference 5 show a 

discontinuity in the a -p rogram at the entry point onto the constrained a rc .  

The control should be continuous since the variational Hamiltonian is regular  [ 111. 

The performance index is not very sensitive to  this discontinuity so first o rde r  

methods have great difficulty in obtaining continuous a -programs.  The second 

order  scheme demonstrates c lear ly  that a is continuous ac ross  the entry point 

f o r  path 1.. 

Maximum Velocity Pa th  The t rade  off between entry point velocity and range 

in the performance index suggests that the maximum velocity path may be a 

good approximation to the maximum range path, 

is shown by a dashed path in Figs.  5 ,6 ,  and 7. 

(Fig.  5) plus the constrained path down to  26,494 ft/sec. gives only 5.5% less 

range than path 1 and 24.5% m o r e  range than path 2, Initially, the angle-of- 

attack program for maximum velocity resembles  that of path 

however, as the paths near  the entry point, a for  path 1 bends over. The  

The maximum velocity path 

The maximum velocity path 

1, (Fig. 7)r  

difference in velocity a t  the entry point between the maximum velocity path and 

path 1 is 520 ft /sec.  as seen in Fig. 6. 

Conjugate Point F i r s t -order  computing methods t r y  t o  improve performance 

index on each iteration, without concern for  the change in the s ize  of the 

gradient. 

point, since such a path is not an optimal path. 

They w i l l  not converge to  an extrema1 path that contains a conjugate 
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A n  attempt was made, using the second-order sweep method to 

check the resul ts  obtained for  path 2 of Fig. 5 by the f i r s t -o rde r  conjugate 

gradient method. 

equation (which governs the second par t ia l  derivatives of the optimal re turn  

function with respec t  to  the state variables) resulted in overflow of the com- 

puter (10  ). This led us to  suspect the presence of conjugate points in the 

vicinity of the extremal  field for  the following reasons: 

However, all attempts at solution of the matrix Riccati  

38 

( a )  Using the conjugate gradient method t o  solve the maximum range 

problem, both the performance index and the no rm of the gradient increased 

for  SOTE i terat ims,  This behavior indicates that a conjugate point might exist. 

(b) The sweep method t r ies  to  decrease  the magnitude of the gradient 

on each i teration, without concern for  the change in the performance index. 

Hence, the method may very well move toward an ex t remal  path containing 

a conjugate point; 

because solutions t o  the Ricatt i  equation, as mentioned above, will overflow 

the computer first. 

however, convergence to  such a path will not be obtained, - 

( c )  A necessary  (but - not sufficient) condition fo r  the existence of a 

conjugate point on an  ex t remal  path in a maximization problem is for  the 

matrix 

A -1 
B = Hxx - Hxu Ha, Hux 

t o  have some positive eigenvalues over a l l  o r  pa r t  of the path (cf. refs. 7 

and 9). If B is negative-definite over the whole path there  can be no con- 

jugate points. F o r  both paths 1 and 2 in Fig. 5 we found that B did indeed 

have some positive eigenvalues. 
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Terminal  A r c  

specified. 

a r e  t reated as control parameters  chosen t o  maximize the objective function. 

At the initial point of the te rmina l  a r c  h and y a r e  known but V is t o  be 

determined. F r o m  (25) and (32)  

A t  neither end of the te rmina l  a r c  a r e  all the state var iables  

In the conjugate gradient method the missing initial conditions 

1 
= Xv(t2) - - aRF 

C*PMVS 
) 

hM 

aRF 

av 
( 1  4- -1 ( 

R 2m 2 t = t  

to  z e r o  making k ( t  ) equal to  the The optimization process  dr ives  - v 2  a T: 

required value. 

The optimal path obtained is shown in Fig. 8 in the alt i tude-range 

space. The a -p rogram corresponds very closely t o  the U for maximum 

L / D  ( l i f t  over-drag ratio) except near  the t e rmina l  point where high 

of angle-of-attack a r e  used in the flare-out maneuver.  

his tory as a function of range. 

s ea rch  is 19,010 f t /sec.  

values 

Fig. 9 shows the 

The exit velocity determined by a pa rame te r  

9. CONCLUSIONS 

A sufficient condition for separa te  computation of a r c s  f o r  cer ta in  

optimization problems with s ta te  variable inequality constraints  was formal ly  

presented. This concept was applied t o  the problem of maximizing the range 

of a glider entering the E a r t h ' s  a tmosphere at parabolic speeds subject t o  a 

maximum altitude constraint  a f t e r  the initial pull up. In numerical ly  de t e r -  

mining the unconstrained a r c s ,  the conjugate gradient  method converged 

extremely rapidly. This  allowed a detailed investigation of maximum range 
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trajectories.  

F o r  the initial phase of re-entry two locally maximum range arcs - 
were  found. This  appears t o  be a consequence of the lift-drag character is t ics  

of the vehicle and the decrease  in  a i r  density with altitude. Both first and 

second order  methods indicate a conjugate point behavior in the initial phase 

extrema1 field. 
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